0=16t^2-22t-112

Simple and best practice solution for 0=16t^2-22t-112 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16t^2-22t-112 equation:



0=16t^2-22t-112
We move all terms to the left:
0-(16t^2-22t-112)=0
We add all the numbers together, and all the variables
-(16t^2-22t-112)=0
We get rid of parentheses
-16t^2+22t+112=0
a = -16; b = 22; c = +112;
Δ = b2-4ac
Δ = 222-4·(-16)·112
Δ = 7652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7652}=\sqrt{4*1913}=\sqrt{4}*\sqrt{1913}=2\sqrt{1913}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{1913}}{2*-16}=\frac{-22-2\sqrt{1913}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{1913}}{2*-16}=\frac{-22+2\sqrt{1913}}{-32} $

See similar equations:

| x2+10x+89=0 | | -m-6+6=6 | | 5/w=3/w+1 | | 0=8t-9/4t^2+40 | | 100x-x=11 | | (h-1)/4+3h/5=4 | | 1/4(4x-2)=-2/7-3/7 | | 37–18+8w=67 | | 3.5(x+1)=2 | | 18=4+8n-n | | 7p-5p+4(16-3)=-4 | | -5(3w+2)+4w=6w/2 | | x2-3x-8=0 | | 8n-(3n+8)=3 | | |-2x-1|=11 | | .5(2x-3)^2=11 | | −5+7g=3g+9 | | 5g-6=1-g | | 1/4(17x-8)=-1/5(21-12x) | | 5g-10+4=1-g | | -2b-4b=24 | | 2.5x-3/4(2x+5)=3/8 | | 1.43x=8 | | 7(p+1)=9-9 | | 2.5x-3/4(2x+5)=38 | | -9=-7x+4x | | 6(n+4)=-2 | | 9n^2-2n-10=0 | | 20000=1.15x+14 | | 2n+15=39 | | 5x-5/6x-5=4/5 | | 21/5x-3/4(2x+5)=3/8 |

Equations solver categories